Алгебра 9 класс Никольский С.М., Потапов М.К.

Категория Учебники
Дисциплина Алгебра
Метки 9 класс

Аннотация

В этом году вы продолжите изучение алгебры. Алгебра, наряду с арифметикой и геометрией, принадлежит к числу старейших математических наук. В 9 классе вы обратитесь к вопросам, которые давно интересовали учёных, – это методы решения уравнений и неравенств, доказательство неравенств, формул для арифметической и геометрической прогрессий, тригонометрических формул, формул комбинаторики. Не случайно в учебнике помещены задачи, связанные с именами выдающихся математиков: Пифагора, Евклида, П. Ферма, И. Ньютона и др.

Пример из учебника

В 9 классе вы научитесь решать неравенства – линейные и вто рой степени, изучите метод интервалов для решения рациональных неравенств. Все умения, связанные с неравенствами, вам потребуются при изучении алгебры не только в 9 классе, но и в старших классах.

В этом году расширится круг изученных функций, что обогатит ваши представления о функциях и их свойствах и позволит ввести понятие корня степени п. Вы познакомитесь с функциями натурального аргумента – последовательностями, с арифметической и геометрической прогрессиями, формулами для вычисления суммы первых п членов этих прогрессий, решите ряд старинных за дач, связанных с прогрессиями.

Ещё в курсе геометрии вы познакомились с синусом и косину сом, тангенсом и котангенсом угла. Изучение тригонометрических формул в 9 классе не является обязательным для обычных классов, но для классов с углублённым изучением математики этот материал по традиции обязательный. Владение им поможет успешнее освоить программу старших классов.

Содержание

ГЛАВА 1. Неравенства
§ 1. Линейные неравенства с одним неизвестным 5
1.1. Неравенства первой степени с одним неизвестным —
1.2. Применение графиков к решению неравенств первой степени с одним неизвестным 9
1.3. Линейные неравенства с одним неизвестным 12
1.4. Системы линейных неравенств с одним неизвестным 16
1.5*. Неравенства, содержащие неизвестное под знаком модуля 21
§ 2. Неравенства второй степени с одним неизвестным 26
2.1. Понятие неравенства второй степени с одним неизвестным . .
2.2. Неравенства второй степени с положительным дискриминантом 28
2.3. Неравенства второй степени с дискриминантом, равным нулю 32
2.4. Неравенства второй степени с отрицательным дискриминантом 35
2.5. Неравенства, сводящиеся к неравенствам второй степени 37
§ 3. Рациональные неравенства 40
3.1. Метод интервалов —
3.2. Решение рациональных неравенств 45
3.3. Системы рациональных неравенств 50
3.4. Нестрогие неравенства 53
3.5*. Замена неизвестного при решении неравенств 58
Дополнения к главе 1 61
1. Доказательство числовых неравенств —
2. Производные линейной и квадратичной функций 66
3. Исторические сведения 74
ГЛАВА 2. Степень числа
§ 4. Функция у = х” 75
4.1. Свойства и график функции у = х”, х^О —
4.2. Свойства и график функций у = х2т и у = х2т* ‘ 77
§ 5. Корень степени п 81
5.1. Понятие корня степени п —
5.2. Корни чётной и нечётной степеней 82
5.3. Арифметический корень степени п 87
5.4. Свойства корней степени п 93
5.5. Функция у = Ух, х > 0 97
5.6*. Корень степени п из натурального числа 101
5.7*. Иррациональные уравнения 104
Дополнения к главе 2 109
1. Понятие степени с рациональным показателем —
2. Свойства степени с рациональным показателем 112
3. Исторические сведения 117
ГЛАВА 3. Последовательности
§6. Числовые последовательности и их свойства 119
6.1. Понятие числовой последовательности —
6.2. Свойства числовых последовательностей 123
§ 7. Арифметическая прогрессия 126
7.1. Понятие арифметической прогрессии —
7.2. Сумма первых п членов арифметической прогрессии 130
§ 8. Геометрическая прогрессия 133
8.1. Понятие геометрической прогрессии —
8.2. Сумма первых п членов геометрической прогрессии 136
8.3*. Бесконечно убывающая геометрическая прогрессия 138
Дополнения к главе 3 142
1. Метод математической индукции —
2. Исторические сведения 147
ГЛАВА 4. Тригонометрические формулы
§ 9*. Угол и его мера 149
9.1*. Понятие угла —
9.2*. Градусная мера угла 152
9.3*. Радианная мера угла 156
§ 10*. Синус, косинус, тангенс и котангенс угла 159
10.1*. Определение синуса и косинуса угла —
10.2*. Основные формулы для sin а и cos a 165
10.3*. Тангенс и котангенс угла 170
Дополнения к главе 4 175
1. Косинус разности и косинус суммы двух углов —
2. Формулы для дополнительных углов 179
3. Синус суммы и синус разности двух углов 180
4. Сумма и разность синусов и косинусов 182
5. Формулы для двойных и половинных углов 185
6. Произведение синусов и косинусов 191
7. Исторические сведения 193
ГЛАВА 5. Элементы приближённых вычислений, статистики, комбинаторики и теории вероятностей
§ 11. Приближения чисел 194
11.1. Абсолютная погрешность приближения —
11.2. Относительная погрешность приближения 198
11.3*. Приближения суммы и разности 202
11.4*. Приближение произведения и частного 206
11.5*. Приближённые вычисления и калькулятор 210
§ 12. Описательная статистика 212
12.1. Способы представления числовых данных —
12.2. Характеристики числовых данных 217
§ 13. Комбинаторика 222
13.1. Задачи на перебор всех возможных вариантов —
13.2. Комбинаторные правила 224
13.3. Перестановки 227
13.4. Размещения 228
13.5. Сочетания 230
§ 14. Введение в теорию вероятностей 232
14.1. Случайные события —
14.2. Вероятность случайного события 236
14.3. Сумма, произведение и разность случайных событий 240
14.4. Несовместные события. Независимые события 243
14.5. Частота случайных событий 246
Дополнения к главе 5 248
1. Бином Ньютона. Треугольник Паскаля —
2. Исторические сведения 250
Задания для повторения 253
Задания для самоконтроля по программе 7—9 классов 301
Задания из тренировочных вариантов ГИА 311
Задания на исследование 314
Список дополнительной литературы 316
Предметный указатель 318
Ответы 320
Для комфортного и реалистичного чтения учебника в онлайн режиме, встроен простой и мощный 3D плагин. Вы можете скачать учебник в PDF формате по прямой ссылке.